Mutations in the NHEJ component XRCC4 cause primordial dwarfism.
نویسندگان
چکیده
Non-homologous end joining (NHEJ) is a key cellular process ensuring genome integrity. Mutations in several components of the NHEJ pathway have been identified, often associated with severe combined immunodeficiency (SCID), consistent with the requirement for NHEJ during V(D)J recombination to ensure diversity of the adaptive immune system. In contrast, we have recently found that biallelic mutations in LIG4 are a common cause of microcephalic primordial dwarfism (MPD), a phenotype characterized by prenatal-onset extreme global growth failure. Here we provide definitive molecular genetic evidence supported by biochemical, cellular, and immunological data for mutations in XRCC4, encoding the obligate binding partner of LIG4, causing MPD. We report the identification of biallelic mutations in XRCC4 in five families. Biochemical and cellular studies demonstrate that these alterations substantially decrease XRCC4 protein levels leading to reduced cellular ligase IV activity. Consequently, NHEJ-dependent repair of ionizing-radiation-induced DNA double-strand breaks is compromised in XRCC4 cells. Similarly, immunoglobulin junctional diversification is impaired in cells. However, immunoglobulin levels are normal, and individuals lack overt signs of immunodeficiency. Additionally, in contrast to individuals with LIG4 mutations, pancytopenia leading to bone marrow failure has not been observed. Hence, alterations that alter different NHEJ proteins give rise to a phenotypic spectrum, from SCID to extreme growth failure, with deficiencies in certain key components of this repair pathway predominantly exhibiting growth deficits, reflecting differential developmental requirements for NHEJ proteins to support growth and immune maturation.
منابع مشابه
Mutations in XRCC4 cause primary microcephaly, short stature and increased genomic instability.
DNA double-strand breaks (DSBs) are highly toxic lesions, which, if not properly repaired, can give rise to genomic instability. Non-homologous end-joining (NHEJ), a well-orchestrated, multistep process involving numerous proteins essential for cell viability, represents one major pathway to repair DSBs in mammalian cells, and mutations in different NHEJ components have been described in microc...
متن کاملClinical Spectrum of LIG4 Deficiency Is Broadened with Severe Dysmaturity, Primordial Dwarfism, and Neurological Abnormalities
DNA double-strand break repair via non-homologous end joining (NHEJ) is involved in recombination of immunoglobulin and T-cell receptor genes. Mutations in NHEJ components result in syndromes that are characterized by microcephaly and immunodeficiency. We present a patient with lymphopenia, extreme radiosensitivity, severe dysmaturity, corpus callosum agenesis, polysyndactily, dysmorphic appear...
متن کاملXLF Interacts with the XRCC4-DNA Ligase IV Complex to Promote DNA Nonhomologous End-Joining
DNA nonhomologous end-joining (NHEJ) is a predominant pathway of DNA double-strand break repair in mammalian cells, and defects in it cause radiosensitivity at the cellular and whole-organism levels. Central to NHEJ is the protein complex containing DNA Ligase IV and XRCC4. By searching for additional XRCC4-interacting factors, we identified a previously uncharacterized 33 kDa protein, XRCC4-li...
متن کاملA nonsense mutation of human XRCC4 is associated with adult-onset progressive encephalocardiomyopathy
We studied two monozygotic twins, born to first cousins, affected by a multisystem disease. At birth, they both presented with bilateral cryptorchidism and malformations. Since early adulthood, they developed a slowly progressive neurological syndrome, with cerebellar and pyramidal signs, cognitive impairment, and depression. Dilating cardiomyopathy is also present in both. By whole-exome seque...
متن کاملWhen natural mutants do not fit our expectations: the intriguing case of patients with XRCC4 mutations revealed by whole-exome sequencing
Mutations in the XRCC4 gene have been recently identified through whole-exome sequencing (WES). While the overall clinical presentation of the patients (severe short stature, microcephaly, gonadal failure) generally conforms with what is expected for the defect of a critical nonhomologous end-joining (NHEJ) DNA repair factor, the absence of consequence on the proper development of the immune sy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of human genetics
دوره 96 3 شماره
صفحات -
تاریخ انتشار 2015